

AFRL-IF-RS-TM-2002-1
In-House Technical Memorandum
November 2002

AUTOMATIC SUMMARIZATION WITH SLOTH
(SUMMARIZES LENGTHY DOCUMENTS AND
OUTPUTS THE HIGHLIGHTS)

David B. Kaplin

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TM-2002-1 has been reviewed and is approved for publication.

APPROVED:
 SHARON M. WALTER
 Laboratory Program Manager

 FOR THE DIRECTOR:

 JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
November 2002

3. REPORT TYPE AND DATES COVERED
In-House Tech Memo, Jul 02 – Aug 02

4. TITLE AND SUBTITLE

AUTOMATIC SUMMARIZATION WITH SLOTH (SUMMARIZES LENGTHY
DOCUMENTS AND OUTPUTS THE HIGHLIGHTS)

6. AUTHOR(S)

David B. Kaplin

5. FUNDING NUMBERS

PE - 62702F
PR - 459E
TA - PR
WU - OJ

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AFRL/IFEA
32 Brooks Road
Rome, NY 13441-4114

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFRL-IF-RS-TM-2002-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFEA
32 Brooks Road
Rome, NY 13441-4114

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TM-2002-1

11. SUPPLEMENTARY NOTES
AFRL Project Engineer: Sharon M. Walter/IFEA/315-330-7890. This document reports on a research project pursued
by a college student during his summer employment at AFRL/Rome Research Site.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

SLOTH is an object-oriented, modular, text summarization tool written in the JAVA language. It uses the concept
relationship information provided from textual analysis by the eQuery software developed at Syracuse University to
create a summary of a text file using extracted sentences. SLOTH stands for Summarizes Lengthy documents and
Outputs The Highlights.

15. NUMBER OF PAGES
19

14. SUBJECT TERMS war simulation, computer games

Summarization, SLOTH, eQuery, extraction 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

I. Introduction...1

II. SLOTH User Documentation ...2

III. Technical Information...9

IV. Using Syracuse University's eQuery Software12

V. SLOTH and Memory Usage ...14

VI. How to Extend SLOTH ..15

i

 1

I. Introduction

SLOTH is an object-oriented, modular, text summarization tool written in the
Java software language (version 1.4.0). To aid SLOTH, the program eQuery, developed
at Syracuse University, is used to extract important concepts and relations from texts.

SLOTH is capable of producing two forms of summaries, displaying them in
either Hypertext (HTML) or Plain Text format. SLOTH operates efficiently on small
documents and can handle documents of approximately 80 pages long and larger (tested
up to 106 pages).

The SLOTH interface is shown below in Figure 1.

Figure 1: SLOTH Interface

 2

II. SLOTH User Documentation

What is SLOTH?
SLOTH is a text summarization software program. When provided with a text

file SLOTH will be able to create a summary of that text using selected sentences from it.
SLOTH is platform independent. The tool that SLOTH uses to analyze concepts and
relationships between words is called eQuery. eQuery was developed at the Syracuse
University Center for Natural Language Processing (website: cnlp.org/tech/equery.asp).

SLOTH stands for
• Summarizes

• Lengthy documents and

• Outputs

• The

• Highlights
Sloth allows easy browsing of the original text of the document, displays the

relationships found by eQuery, and outputs the summarization.

How do I use SLOTH?
When SLOTH starts you can

• Read in a text file (File Menu -> Read)

o This is the file you want to summarize. After selecting the file from the
Open File Dialog, SLOTH will begin analyzing your data. While SLOTH
is analyzing, you can read the original text of the document. The time
needed to analyze a document depends on a few factors:

 Larger Documents take longer. One 50 page document took
approximately 25 minutes to analyze

 SLOTH must initialize the Natural Language Extractor. On the
testing machine (1 Ghz Pentium III with 256 MB RAM) this took
approximately one minute. Note: This process only needs to
happen one time while SLOTH is running.

• Read in a SLOTH Data File

o Once you have summarized a file with SLOTH you can read in the
SLOTH Data File. These files have ".sdf" as their ending.

 3

o On the testing machine it took 7 seconds for a 50 page document to load
completely.

Now that a file has been loaded, you can do a lot more!
• The Original Text Tab along with the Index will allow you to browse the

document sentence-by-sentence or section-by-section, highlighting your current
position in the text.

• Save the summary to the hard drive.

• Change the size of your summary using the preferences dialog box.

What do those numbers mean?
[Section Number. Sentence Number]
Example:
1002.4 is the location of the Fourth Sentence in the One Thousand and Second

Section. For ease of use please use the Document Index List.

What kinds of Documents can I Summarize?
Right now, only Plain Text Document can be Summarized. The Natural

Language Parser is limited to the ISO-8859-1 Character Set. All normal ASCII text will
work. Some international characters will not.

Where is the "Stop Processing Button"?
Sorry, there is no way to stop analyzing text once the process has started. This is

due to Java's thread handling techniques.

How does the Summarization Process work?

Most of the necessary processing takes place while SLOTH is analyzing the
structure and grammar of the document. The result of that processing can be stored in a
SLOTH Data File and used later to develop a summarization.

Once SLOTH has analyzed the structure and grammar of the document, you can
chose one of two different methods for Summarization. These can be found under
Options -> Options [Summary Options].

• Sentence Based - The sentences from which eQuery has produced more than a
particular number of concepts and relationships will be used to construct the
Summary. These sentences will be ordered in the same way as they were in the
Original Document.

 4

• Section Based - The entire section is weighed by references from eQuery. They
are also listed chronologically. Usually summaries from this method are easier to
read than the sentence based variety.

Figure 2: Slow Route to Summarization - Process from Text Files

Figure 3: Fast Route to Summarization - Begin with Processed Data

How can I save a Summary?
This option is under the File Menu

My Document Disappeared, Where did it go?
There is a known problem with the display of large documents within SLOTH.

The easiest way to correct this problem is to make sure the document has plenty of line
breaks inside of it. If you can, open up the document in a word processor and make sure
to add in the line breaks when you save as text. REMEMBER: When you want to
parse this file you MUST make sure the option to Collapse Whitespace is OFF.
Your document will not display correctly if this option is turned on.

Read Document
From Disk

Analyze Structure
and Grammar

Produce
Summarization

Sloth Data File

Produce
Summarization

 5

Visual Guide to SLOTH

Main Window

The Main Window display is shown in Figure 4, with text identifying the
numbered components of the window in the paragraphs below.

Figure 4: The Main SLOTH Window

1. Document Index
On the left hand side of each entry is its position in the document. The first

number is the Section Number and the second is the sentence number in that section. As
of this version the definitions of Section and Sentence are used very loosely. If you
select one of these entries, it will bold the corresponding text in the document and move
to that position within the text.

 6

2. Index Slider
Dragging this allows you to change the size of the Tabs and the Document Index.

3. Index Slider Move Buttons

These buttons let you switch your view to the Document Index alone, the Tabs
alone, or both at once.

4. Original Text Tab

Shows the original text of the document. If you see large amounts of whitespace,
you should set the option to collapse whitespace.

5. Natural Language Text Tab

Shows the relationships within the extracted relationships.

6. Summary Text Tab

Always show the HTML Extended Summary. The original document is included
with the summary in front. Selected lines are bolded and referenced in hypertext.

7. Operation Progress

Briefly explains the status of the operation and its progress. All operations that
have an unknown ending time will have a small animation and the elapsed time will be
shown.

8. Status Message

Provides further explanation of the current activity

9. Elapsed Time

Shows the time that has progressed since the operation began.

 7

File Menu

The File Menu display is shown in Figure 5. Options from the File Menu are
listed below.

1. Read Document

 Lets you choose which text file you want to analyze.

2. Save Summary

o Brief Text Summary - Saves only the Summary (with original positions)
to a text file.

o HTML Summary - Appends the original text to the summary, links them
together and bolds statements used in the summary.

3. Load Extracted

Loads a SLOTH Data Format File for faster summarizing.

4. Save Extracted

Saves the recently read document as SLOTH Data Format. It is strongly
recommended to save your results to avoid analyzing long documents twice.

Figure 5: The File Menu for SLOTH

 8

Options
Instructions to SLOTH for Display, Parsing, and Summary options are set from

this window.

Display

The Font Size affects the Document Index and the Original Text panels. The Font
Size cannot be applied to the Natural Language Text or the Summarized Text.

Index Options allow you to configure the Document Index to show only the first
sentence in each Section or in every Sentence.

Figure 6: SLOTH Options for the Display

Parsing

Figure 7: SLOTH Option for Parsing
When enabled, the Collapsing Whitespace option, makes the document look a lot

cleaner when displayed in the Original Text Tab. If this option is enabled then "John
Smith" and "John Smith" will both become "John Smith".

 9

Summary

Figure 8: SLOTH Options for Summary
Each hit corresponds to the number of relationships found per indexed part of a

document. The number of hits usually corresponds with the number of definitions, or
strong language used in that part of the document. These are sections that could be
important to the summary. By setting a minimum number of hits a summary can be
thinned down or increased.

If the Paragraph choice is selected then all of the sections will be weighed by
their total number of hits. These summaries tend to flow better because each Section is
extracted in its entirety from the document.

III. Technical Information

Internal States
To keep track of program flow, SLOTH has a set of internal states that dictate

what options are valid and that manipulate the interface for consistency. The operation of
SLOTH follows these paths strictly. If there is an error found within the operation of
SLOTH it can be traced to one link within this System.

Figure 9 depicts the SLOTH program flow.

 10

Figure 9: SLOTH Internal States

SLOTH Packages

Model
The classes here are as close to classical data structures as possible.
Virtually all algorithms are implemented using classes within the controller

package. The NLPStat class does a little more than normal storage by also encapsulating
a couple of algorithms for finding particular relationships among the data

View
This package is about the interpretation of data. Through abstraction, these

classes make file I/O easy. To get data into the right form for the Natural Language
Processor the DocumentBackbone must be transformed into an XML-like format. In
particular the character set must be ISO-8859-1 (currently a common choice for most
web-browsers). Using a similar interface, summaries are output to files.

This package also takes care of the writing of Parsed Data to its serialized data
form.

Pref
This package provides a common interface for classes to interact with program

Preferences.

Document
Loaded

No Document
Loaded

eQuery
Initialization

External
Processing

Internal
Processing

Load Parsed
Data

Read file
(first) Read file

Read file

Threads done

Threads done

 11

Pref.Modules
This package contains concrete examples of AbstractPrefModule.

Controller
The classes within controller tie the program together. Several thread classes are

responsible for communicating to eQuery along with file input.
SlothManager stores the finite-state automata that represents the program flow.
DocumentComposite handles the more important functions that provide the data

for many parts of the program.
The SubjectThread, SubjectListener, and Trigger system allow easy tracking of

threads in a system that requires things to be finished.

GUI
This is a system of objects that get manifest in the class GUIComposite. All of

the classes interface with the Java Swing Framework to provide a user interface. A lot of
work was done to transfer most of the "controller" type operations into separate classes in
the package controller. These items in the gui package do not have a particular amount
of intelligence to them. They are here primarily for display.

When an interaction does take place the gui component usually talks to its
counterpart in the controller package or is told exactly what to do from that controller.

 12

SLOTH Runtime Statistics

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 15 16 18 20 26 28 50 77 106

Pages

Fil
e
Siz
e
(B
yte
s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac
cu
rac
y

File Size (Bytes) Accuracy

Figure 10: SLOTH Statistics

Figure 11: Average Execution Times on a 1Ghz PIII with 261 MB RAM

(raw documents)

IV. Using Syracuse University's eQuery Software

The Natural Language Text is provided for SLOTH from a program called
eQuery from Syracuse University's Center for Natural Language Processing. Information
about eQuery can be found at http://www.cnlp.org/

Pages Approximate Time
Under Five 30 seconds
Under Fifteen 3 Minutes
Under Thirty 6 Minutes
Under Fifty 30 Minutes
Under Eighty 40 Minutes
Under One Hundred and Ten 1 Hour and 15 Minutes

 13

When eQuery examines a document it outputs three bits of extracted information:

• Entity - Usually a noun, sometimes a verb

• Relationship - How the entity is related to the information

• Information - More information about the Entity
To better explain the output of the Natural Language Extractor I will show this

example:
Original Text:
"This is a test of the lexical capabilities of SLOTH. What sentences will it
want to highlight? I really have no idea what the outcome will be. But,
SLOTH does! And now the amazing results...
Drumroll Please...

Ta Da!"

Natural Language Text:

Entity Relationship Information Ref Explanation

0 test object lexical
capability -1.0

1 test associated lexical
capability -1.0

2 capability characteristic lexical -1.0
3 capability associated SLOTH -1.0
4 want agent it 0.1
5 have agent I 0.1
6 have object idea 0.1

7 result characteristic amazing 0.2

Notice the first few entries have -1.0
as their Reference. This number
indicates that SLOTH was not able
to find both the entity and the
information within the same
sentence. In this case, the reason is
because the NLE changed the noun
agreement.
However, this is minimized a little
bit of guesswork within SLOTH.
Notice Entry #7. the word "result"
does not appear, but because "result"
can be seen as a form of results
SLOTH was able to track down the
original sentence of origin.

eQuery provides information from the text in the form of a tab-delimited output

String:
Entity Relationship Information

Things to remember about this string:

1. Fields do not retain the tense originally found in the document
2. Fields do not retain the noun-plural agreement.

 14

3. Occasionally the entity and information fields appear to be switched.
4. The Entity field may contain one of many custom entities. These are signified

with an underscore character. For example, “going on” becomes “go_on”
5. The order in which eQuery returns the result sometimes has to do with the

original order of the document. This is not a rule. There have been plenty of
occasions in which eQuery returns something from the bottom of the document
first. This aspect is the reason why SLOTH needed its document ordering.

6. eQuery will not return any results if all of the text is in the same case.

V. SLOTH and Memory Usage
Natural language extraction and processing are very intense and demanding

operations. SLOTH is no exception to this rule. In its windows implementation, the
script file that launches SLOTH alerts the Java Virtual Machine (JVM) that SLOTH
demands a maximum of 128MB RAM for its heap. Although this extra allocation will do
little to speed up the process of analyzing documents, it does allow SLOTH to handle
larger documents that it could if it was using the normal 64MB heap allotted from the
Windows JVM.

After parsing a large document SLOTH retains more memory than it needs. In
future revisions this may be fixed by calling the garbage collector after a document is
finished being parsed. Another way to alleviate this problem on computers with smaller
amounts of RAM available is to save the extracted information. The amount of memory
allocated to use SLOTH data files is significantly less than using directly parsed data.

SLOTH Files

 userprefs.data – holds information, like Summary Method, Font Size …
 Structure: This is a Serialized HashMap of all the preferences.
 *.sdf - SLOTH [Parsed] Data File
 Structure: Serialized String Header, DocumentComposite.

NOTE: Serialization is compatible with future versions of the Java language, however, if
there are any changes within the classes:
 DocumentBackbone
 DocumentComposite
 NLPAdvocate
 NLPStat
Then all previously created SLOTH Data Files will be incompatible with future versions.

There are two known Exceptions thrown while SLOTH is in memory.

One is because of a flaw in the JProgressBar class. It is benign; no operation is
hindered by this exception

 15

The second is a flaw in the line breaking algorithms used in Java 1.4 found in
both JEditorPane and JTextPane. Both of Original Text Pane and Summary Pane
are affected by this flaw. They will not display data when there are too many
characters per line. The actual computational parts of SLOTH are not affected by
this flaw, only these two display components. The only fix is to make sure that
the large input documents have a decent number of line breaks. Make sure to
turn Collapse Whitespace OFF. That particular option removes what are
viewed to be extraneous line breaks.

VI. How to Extend SLOTH
Since SLOTH was made to be modular there are quite a few areas that can be

modified to add to the functionality of SLOTH. Some possible areas of extension are
listed here:

• Improving Text Analysis:
Add an option for “Pureeing” large documents into chunks. Perhaps a “chop”
option to cut documents into eighths, or sixteenths, merged into a
DocumentBackbone. This would allow a faster analysis and, given current
algorithms, not affect the results much.

• Parsing other file types:
The class in charge of parsing documents into DocumentBackbone form is called
PlainParser, inherited from AbstractParser in the package controller. Suggested
other file types are HTML, PDF, and Word Document. (The latter may be
tricky.)

• Output to other file types:
AbstractFileView and AbstractStatisticalSummaryView are good classes to
extend. Other possible output types: Database, XML, other forms of HTML
Summary, based on different parts of the document.

• Adding new preferences
pref.AbstractPreferenceModule allows an easy interface to implement new
preferences. PreferenceChangeListener also plays a big role in changing
preferences, using the observer pattern.

Remember that any change in the GUI will most likely involve changing both

GUIComposite and SlothManager. More complex additions may need new internal
states within SlothManager.

